STABILITY OF CYLINDRICAL SHELLS UNDER
EXTERNAL PRESSURE
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By methods of the theory of perturbations {1-4], upper critical loads have been obtained for nonideal
cylindrical shells under transverse and hydrostatic loading. Problems of approximation are studied in par-
ticular; when determining the total and ordinal numbers of degrees of freedom, the information about the den-
sity of the spectrum of the corresponding linear stability problems is used [5-7]. The band of scatter of the
upper critical load is obtained. A numerical experiment allowed the probability characteristics of the process
of stability loss to be calculated.

We consider a nonlinear system of equations of the theory of shells which relative to the stress function
F and normal deflection w describes the buckling of ideal thin-walled cylindrical shells under transverse or
hydrostatic loading (see, for example, [4]). According to the perturbation theory, the functions w and F and
the loading parameter A are expanded in the asymptotic series

w=M,=1+a +be?+... e, (1

where ¢ is a small parameter characterizing the amplitude of the buckled state; ), is the first eigenvalue of the
linear problem; a and b are coefficients — a =0, while the values of the coefficient b have been obtained in [4].

Knowing the coefficient b we can calculate the upper critical load X, of the ideal construction [4] in the
case of the single-term approximation
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Here | ;] is the dimensionless amplitude of a fault when the fault coincides with the first mode of sta-
bility loss.

The present paper supplements the results of the works [2-4] on stability of nonideal cylindrical shells:
1) We study the spectrum in stability problems for different methods of fixing the ends of eylinders [5, 8, 9];
2) we determine the total and ordinal numbers of equivalent modes of stability loss for nonhomogeneous linear
problems [6, 7]; 3) we have chosen the corresponding single-term approximation for a system with several
degrees of freedom.

The problems of approximation of nonideal systems with distributed parameters [6, 7] are directly con-
nected with the character of the spectrum in the vicinity of the least eigenvalue A,. In this vicinity the expres-

sion for the critical loads q(n, 1) is simplified:
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where 1, R, and t are the length, radius, and thickness of the cylindrical shell; v is Poisson's ratio. It is

obvious that the number of waves along the circumferential coordinate is iy > 1 for sufficiently thin-walled
shells of medium length (L/R = 0(1)). Consequently, the adjacent modes with the numbers ny, n; + 1, .. .,
Ny, . . ., Ny are matched by the critical parameters q(n;, 1), . . ., g4, 1), . . ., g0y, 1), which differ little
if ny <ny, ny = max (0, —ny, n, — n,). We introduce the notation

no=n,l =p), p=n/n, €1, nyg=max(n, — ny, 1y — ny). @)

If the relation (4) is inserted into the expression (3) and the second-degree small terms are neglected, then we
have q(n, 1) = (1 = 1.54%q(n,, 1). Approximately the number of degrees of freedom [6, 7] which are equivalent
in asymptotic expansions for nonhomogeneous linear buckling problems, when all Fourier coefficients of the
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right sides are of the same order of smallness, is calculated according to the expressions

1—%, q__g\i/2 L
l=1+2p_n’, p:( 1‘5'{' ﬂﬁ) , )(+=—Ai;, ()
where 8 is the coefficient characterizing the ratio of the amplitude of the mode (nx + ng, 1) to the amplitude of
the mode (n«, 1) in the nonhomogeneous buckling problem. In the calculations, this coefficient 3 is taken equal
to 0.9.

When obtaining the expression (5) it was assumed that the faults corresponding to the modes of buckling
with the numbers

ng,n 1,00 m=4 n<<n, <Ny, L =1+ n, —ny, )

have the same order of smallness. Since n; = O(n«), 1y = O(n), Ny = O[R/ 1) i/ 4], the given assumption is
natural: The coefficients of the Fourier series with sufficiently high numbers from n, to n, are commensurable.
We note that the last assumption in other problems will not be natural (see, for example, [6], where a non-
homogeneous problem for the Klein—Gordon equation is studied).

Thus, we consider shells whose initial deflection is given in the form of the trigonometric polynomial

G iyt
W°= tSin%.Z fi sin _&iﬁ_. (7)
i=n,

In contrast to [2-4], we consider not any single fault coinciding with the first mode of stability loss, but
an entire class of faults W, corresponding to equivalent modes of stability loss {6); axisymmetricalfaults are ex-
cluded from the consideration. It is obvious that functions from the class (7) have the character of beating with
respect to the circumferential coordinate (nx > 1).

We next consider a class of faults (7) in which 151 =1 fn,ts Yip =0, i.e., one fault differs from another
by signs of the coefficients of the segment of a Fourier series (Fig. 1). Each of the functions W, in the vicinity
of the maximum value is well described by the function

W = tf, sin (na/L) sin ny(y + y, )R-, fi = = max W,. ®)
Indeed, transferring the origin of reference to the point where the function W, is maximum, we obtain

Tg—Ny
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where ¢ is the initial phase of the sinusoidal quantity. If we transform the sine under the sum sign according
to the expression of sum of angles, then for z, for which ljz/R| «< 1, the transformed expression (9) is con-
siderably simplified. Bearing in mind that a linear combination of several sinusoidal quantities cjsin (nsz /R +
@;) with the same frequency is a sinusoidal quantity of the same frequency, we have
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TABLE 1

[/} 0,625 0,05 0,1

L/R i ‘ % L e l | “ l %2 H ] %y ‘ "y

2 2 0,937 0,937 2 0,903 0,903 3 0,840 0,812
1 3 0,892 0,872 4 0,819 0,772 5 6,733 0,636
0,5 5 0,847 0,778 6 0,755 0,650 7 0,619 0,507

From the relation (10) we have (8).

Going over to the calculation of the upper critical load A_, for systems with many degrees of freedom
(6) we obtain an estimate for this parameter A, from below. In each concrete case the initial fault W, has al-
ready been estimated by (8). Therefore, we can use the expression (2) for the calculations, but instead of the
dimensionless amplitude | f; |, corresponding to the first mode of stability loss, we must insert the dimen-
sionless amplitude of the initial fault Wy, i.e., |fx|. The approach being proposed is founded on the experi-
mental work [10, 11]. In [11] it is mentioned that ". . . buckling, generally speaking — a very localized phe-
nomenon — does not depend on the adjacent regions of the shell which may or may not be enveloped by the sub-
sequent stages of buckling."

In Table 1, for a shell with R/t = 300, we have presented the results of calculations to determine the
number of degrees of freedom I, the dimensionless parameter w_ (w. = A /A;) dependent on the dimensionless
amplitudes | fj ] and the relative length of the shell L/R [see 2), (5), (7)] (in the table and subsequently the
sign on the parameter v, is omitted, »; = maxn., %, = minn.). From the calculations thus presented we see
that the character of the spectrum in a substantial manner influences the number of degrees of freedom I. With
the growth of the amplitudes of the initial faults |{; | and with the decrease of the relative lengths of the shells
L/ R this parameter increases, which leads in the final analysis to the appearance of scatter bands for the
upper critical loads:

%o < u<T Uy (11)

As long as the loading parameter is less than n,, not a single shell out of the series being considered
loses stability; when the loading parameter reaches the value %, all shells of the series being considered
lose stability. Under the series of shells we understand those such that for the calculated number of degrees
of freedom all absolute values of the coefficients | fj | of the trigonometric polynomial (7) coincide, the dif-
ference being connected only with the different signs. Practical calculations showed that the minimum loading
parameter %, almost coincides with the loading parameter which is obtained in the case of such a dimension-
less amplitude of faults:

fo = 1lf:l.
It is obvious that f, = | f,| [see (8)].

In Table 1 there is given a parameter », = 0.507 (I fj! = 0.1, L/R = 0.5) which is below the lower critical
load for the problem being considered. The perturbation theory does not describe substantially nonlinear ef-
fects; the solution of the nonlinear system in the case of using methods of the perturbation theory [1-4] is ex-
panded in a series with respect to a small parameter [see (1)]; the norm of the solution is not small when the
upper critical load approaches the lower one. These nonlinear effects can be described, if we use in the solu-
tion of nonlinear problems the Bubnov- Galerkin method [12], especially selecting the approximation,

In Fig. 2 we have presented a scatter band of upper critical loads when the dimensionless amplitudes of
the initial faults for shells with R/t = 800 and L./R = 0.5 vary; the curves 1 and 2 correspond to the minimum
and maximum values of the upper critical loads, the curve 3 corresponds to the number of degrees of freedom
in the calculation, while the curve 4 corresponds to the lower critical load. The curve 1 in the right lower
corner of Fig. 2 is located below the line 4, since the theory of perturbations does not describe substantially
nonlinear effects. The entire scatter band of "experimental™ results presented in Fig. 2 is located below the
curve for the upper critical load obtained in [4].

In Figs. 3 and 4 we have presented the results of calculations to determine the minimum critical loads
(solid and dashed lines); in Fig. 4 we have given the dashed—dot curves for the number of degrees of freedom 1.
Figures 3 and 4 correspond to the values of the dimensionless amplitudes of the initial faults | f;| = 0.025 and
0.05; curves 1-3 are constructed for shells with /R = 2, 1, 0.5, with the solid curves for the parameter by =
min (~b) and the dashed curves for the parameter by = max (~b). In Fig. 4, the curves 4 and 5 correspond to
shells with L/ R = 0.5 and 1. The calculated curves obtained for the critical loads are located considerably
lower than the analogous curves from [4].
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The calculations carried out allow us to construct the probability characteristics of the process of sta-
bility loss [see (7), (11), and Fig. 2]; the derivation of the probability characteristics somewhat differs from
the methods proposed, for example, in [13]. As a result of the numerical experiment, for each series we have
obtained the set of critical loads

2 < %11 xzv MRS %1 < 1y (12)

where the parameter i is determined by the number of degrees of freedom ! in the case being considered. Each
event is assumed to be equally probable: In the trigonometric polynomial (7) we choose all possible combina~
tions of the signs of the coefficients. Grouping in the corresponding manner the critical loads (12), we obtain
the probability characteristics. In Fig. 5 we have presented the results of the probability calculations: The
curve 1 corresponds to a shell with R/t =800, L/R =0.5, |£fj1=0.1, I=9; the curve 2 corresponds to R/t =
600, L/R = 0.5, |fj1=0.05, I =7; the curve 3 corresponds to R/t =800, L/R=1, |fj{=0.1, I=5. For a
load parameter less than ., the probability for the shell not to lose stability is unity, while in the case when

it exceeds 1 the probability for the shell not to lose stability is zero. The scatter band in the examples pre-
sented is large; as a rule, in the neighborhood of the least parameter of the critical load n, there is an in-
significant number of critical loads (12) for each series. The straight line 4, corresponding to the lower criti-
cal load, intersects the curve 1 (the perturbation theory does not take into account substantial nonlinearities).

It is desirable to take into account the characteristics of the stability process constructed from the nu-
merical experiment when carrying out actual experiments. If the number of degrees of freedom ! is large
(which is to be borne in mind during the calculations), then a fairly substantial actual experiment is necessary
in order to give with high confidence practical recommendations for the calculations.
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STRESS CONCENTRATION NEAR THE APEX OF A CRACK
BY THE COUPLE-STRESS THEORY OF ELASTICITY AND
THE METHOD OF PHOTOELASTICITY

Ya. M. Shiryaev UDC 539.30+620.171.5

The stress concentration near the apex of a crack in a transverse field of simple tension has already
been the object of investigations within the framework of couple-stress elasticity theory [1-5]. It follows from
[1-3] that the presence of couple-stresses results in a rise in the stress concentration near the crack apex.
This result "contradicts" the reducing effect of couple-stresses in the known problem about the stress concen-
tration near a circular hole in a tensile field. It is said in [4] that the presence of couple stresses does not
influence the magnitude of the stress-intensity factor, and the stress concentration near an elliptical hole in a
field of simple tension is considered in {5]. There results from an analysis of this paper that the stress con-
centration diminishes with the increase in a new elastic constant of the material [ introduced by the couple-
stress theory of elasticity.

Experimental papers in which the effect of the influence of couple-stresses on the stress concentration
near a crack would be clarified are still nonexistent judging by the literature.

This paper is devoted to a clarification of the effect of the influence of couple stresses on stress concen-
tration near a crack, both analytically and experimentally by the method of photoelasticity.

§1. The stress concentration near the apex of a crack in a transverse field of simple tension is consid-
ered in a coordinate system (Fig. 1).

It is useful to introduce the sum of normal stresses (invariant) into consideration, this sum having the
same value in classical and couple-stress theory and being developed from the solution of the Dirichlet prob-
lem {8, 7], inorder to determine the stress-intensity factor by means of couple-stress elasticity theory. It follows
from the expression for the stresses [8] that

G+ 0,= k(2 %c0s(0/2), (1.1
where k is the stress-intensity factor.

Let us introduce the complex variable z = x + iy = z, + regi, where z is a quantity characterizing the
position of the crack apex. Then (1.1) can be written in the form

1/
o, + 0, = Re {k( 2 ) ZJ. {1.2)

z—zy

Let us apply the complex variable method. According to [6, 7], the dependence between the left side of
(1.2) and the stress functions has the form

0, oy= 4Relp’(z)]. (1.3)

Comparing (1.2) and (1.3) and keeping in mind that (1.2) is valid only for values of z near z,, we obtain the ex-
pression for k in the form

k=2 3lim(z — z,)'/2¢’(2). 1.4

It is seen from (1.4) that the stress-intensity factors k are determined sufficiently simply if only the function
»'(z) is known near the crack apex.
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