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By methods of the theory  of per turbat ions [1-4], upper cr i t ical  loads have been obtained for nonideal 
cyl indr ical  shells under t r a n s v e r s e  and hydrostat ic  loading. Prob lems  of approximation a re  studied in p a r -  
t icular ;  when determining the total and ordinal numbers  of degrees  of f reedom,  the information about the den- 
si ty of the spec t rum of the corresponding l inear stability problems is used [5-7]. The band of sca t te r  of the 
upper cr i t ica l  load is obtained. A numerica l  exper iment  allowed the probabil i ty cha rac te r i s t i c s  of the process  
of stabil i ty loss to be calculated. 

We consider  a nonlinear s y s t e m  of equations of the theory  of shells which re la t ive  to the s t r e s s  function 
F and normal  deflection w descr ibes  the buckling of ideal thin-walled cyl indrical  shells under t r a n s v e r s e  o r  
hydrostat ic  loading (see, for example,  [4]). According to the per turbat ion theory,  the functions w and F and 
the loading p a r a m e t e r  X a re  expanded in the asymptot ic  se r ies  

X = ~/~1 = I "~- a e  JU be 2 -4- . . . .  e << l, (1) 

where  e is a smal l  p a r a m e t e r  charac te r iz ing  the amplitude of the buckled state; k 1 is the f i rs t  eigenvalue of the 
l inear  problem; a and b are  coefficients - a - 0, while the values of the coefficient b have been obtained in [4]. 

Knowing the coefficient  b we can calculate the upper c r i t ica l  load )t+ of the ideal const ruct ion [4] in the 
case  of the s i ng l e - t e rm  approximation 

t ;%~3/2 3 3/2 . . . .  
--kT] = - Y  [ / x I 1 / - - b , l "  (2) 

Here Ifl I is the dimensionless  amplitude of a fault when the fault coincides with the f i rs t  mode of s ta -  
bility loss.  

The presen t  paper  supplements the resul ts  of the works [2-4] on stabil i ty of nonideal cyl indrical  shells:  
1) We study the spec t rum in stabil i ty problems for different methods of fixing the ends of cyl inders  [5, 8, 9]; 
2) we de termine  the total and ordinal numbers  of equivalent modes of stability loss for  nonhomogeneous l inear 
problems [6, 7]; 3) we have chosen the corresponding s ing l e - t e rm  approximation for a sy s t em with severa l  
degrees  of freedom. 

The problems of approximation of nonideal sys tems  with distr ibuted pa rame te r s  [6, 7] a re  di rect ly  con-  
nected with the cha rac t e r  of the spec t rum in the vicinity of the least  eigenvalue k s. In this vicinity the expres -  
s ion for the c r i t ica l  loads q(n, 1) is simplified: 

. ~ 'R 'R  ( ~ L ) 2 ~  I, q (n, l) = '*' t ~_. 
t2 ( i  - -  v 1) R ' L* t ' (3) 

rain q (n, l) - -  q (n,, l), n 2 ~.~ .n [6 (i --  ~.,) , /2] i /2 (R/L)  (R/t) i/2, 

where  L, R, and t a re  the length, radius,  and thickness of the cyl indrical  shell; v is Po i s son ' s  ratio.  It is 
obvious that the number of waves along the c i rcumferent ia l  coordinate is ,z, >> 1 for sufficiently thin-walled 
shells of medium length ( L / R  = O(1)). Consequently, the adjacent modes with the numbers  nl, n 1 + 1 . . . . .  
n,  . . . . .  n 2 a re  matched by the cr i t ica l  pa r ame te r s  q(n~, 1) . . . . .  q(n, ,  1) . . . . .  q(n2, 1), which differ little 
if n o <<n,, n o = max (n, - nl, n 2 - n,). We introduce the notation 

n = n . ( l  • ~t = no/n ,<< t, n o = max(n,  - - n  1, n 2 - - n , ) .  (4) 

If the re la t ion (4) is inser ted  into the express ion  (3) and the second-degree  smal l  t e rms  are  neglected, then we 
have q(n, 1) = (1 : 1.5~2)q(n., 1). Approximately the number of degrees  of f reedom [6, 7] which are  equivalent 
in asymptot ic  expansions for nonhomogeneous l inear  buckling problems,  when all Four ie r  coefficients of the 
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r ight  sides are  of the same order  of smal lness ,  is calculated according to the express ions  

l = i + 2 ~ n , ,  F = ~  T.E ~ ) ' • (5) 

where/3 is the coefficient charac te r iz ing  the rat io of the amplitude of the mode (n, + no, 1) to the amplitude of 
the mode (n,, 1) in the nonhomogeneous buckling problem. In the calculations,  this coefficient Z is taken equal 
to 0.9. 

When obtaining the express ion  (5) it was assumed that the faults corresponding to the modes of buckling 
with the numbers  

n,, n, + i  . . . . .  n~ for m = |; n l ~ n , ~ n . z ,  I = I +n. ,  - - t h ,  (6) 

have the same  order  of smal lness .  Since n 1 = O(n,), n 2 = O(n,), n ,  = O[(R/ t ) l /4] ,  the given assumption is 
natural:  The coefficients of the Four ie r  s e r i e s  with sufficiently high numbers f rom n 1 to n 2 are commensurable .  
We note that the las t  assumption in other problems will not be natural  (see, for  example, [6], where a non- 
homogeneous problem for the K l e i n - G o r d o n  equation is studied). 

Thus, we consider  shells whose initial deflection is given in the fo rm of the t r igonometr ic  polynomial 

n |  

W, = t sin-~- ~_~ fi sint(Y+u~~ (7) R 
i = n t  

In cont ras t  to [2-4], we consider  not any single fault coinciding with the f i rs t  mode of stability loss,  but 
an entire c lass  of faults W 0 corresponding  to equivalent modes of stabil i ty loss (6); ax i symmet r i ca l fau l t s  a re  ex- 
cluded f rom the considerat ion.  It is obvious that functions f rom the c lass  (7) have the charac te r  of beating with 
respec t  to the c i rcumferen t ia l  coordinate  (n, >> 1). 

We next consider  a c lass  of faults (7) in which l fil = I fn, t, Yi0 - 0, i.e.,  one fault differs f rom another 
by signs of the coefficients of the segment  of a Four ie r  se r i e s  (Fig. 1). Each of the functions W 0 in the vicinity 
of the maximum value is well descr ibed  by the function 

W = t], sin (ax/L) sin n, (y  ~- y , ) R  -1, f .  = :t= max TWo. (8) 

Indeed, t r ans f e r r i ng  the or igin  of re fe rence  to the point where the function W 0 is maximum, we obtain 

[( ) ] Wo=tl] , , . l sm%--  c ism -~-+q~i + 1 - ~ ,  Ic~t=~,  (9) 

where  ~o i is the initial phase of the sinusoidal quantity. If we t r a n s f o r m  the sine under the sum sign according 
to the express ion  of sum of angles, then for z, for which I j z / R I  << 1, the t r ans fo rmed  express ion (9) is con-  
s iderably simplified. Bearing in mind that a l inear combination of severa l  sinusoidal quantities ci sin (n.z / R + 
q0 i) with the same  frequency is a sinusoidal quantity of the same  frequency,  we have 

j~t~l- -n~ 
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TABLE 1 

L/R 

2 
t 
0,5 

0,025 

0,937 
0,892 
0,847 

0,937 
0,872 
0,778 

0,05 

2 0.903 
4 01819 
6 0,755 

0,903 
0,772 
0,650 

O,i 

0.840 
o1733 
0,6t9 

~42 

0,812 
0,636 
0,507 

F r o m  the re la t ion  (10) we have (8). 

Going over  to the calculat ion of the upper cr i t ical  load X., for sys t ems  with many degrees  of f reedom 
(6) we obtain an es t imate  for this pa rame te r  X+ f rom below. In each concre te  case  the initial fault W 0 has al-  
ready been es t imated by (8). Therefore ,  we can use the express ion  (2) for the calculat ions,  but instead of the 
dimensionless  amplitude I f l] ,  cor responding  to the f i rs t  mode of stabili ty loss ,  we must  inser t  the dimen-  
s ionless  amplitude of the initial fault W 0' i.e.,  i f . I .  The approach being proposed is founded on the exper i -  
mental  work  [10, 11]. In [11] it is mentioned that " . . .  buclding, general ly  s p e a k i n g -  a ve ry  localized phe- 
nomenon - does not depend on the adjacent regions of the shell which may or  may not be enveloped by the sub-  
sequent stages of buckling." 

In Table 1, for a shell with R / t  = 300, we have presented the resul ts  of calculat ions to determine the 
number of degrees  of f reedom l, the dimensionless  pa rame te r  • (~+ = X+/XI) dependent on the dimensionless  
amplitudes i fit and the relat ive length of the shell L / R  [see (2), (5), (7)] (in the table and subsequently the 
sign on the pa rame te r  • is omitted, ~.i = max ~+, ~t 2 = min~+).  F r o m  the calculations thus presented we see 
that the cha rac t e r  of the spec t rum in a substantial  manner  influences the number of degrees  of f reedom L With 
the growth of the amplitudes of the initial faults I fi 1 and with the dec rease  of the re la t ive  lengths of the shells 
L / R  this pa r ame te r  inc reases ,  which leads in the final analysis to the appearance of sca t te r  bands for  the 
upper cr i t ica l  loads: 

• ~ •  x:. (Ii) 

As long as the loading p a r a m e t e r  is less  than ~2, not a single shell out of the se r i e s  being considered 
loses stability; when the loading pa rame te r  reaches  the value ~l,  all shells of the se r ies  being considered 
lose stability. Under the se r ies  of shells we understand those such that for the calculated number of degrees  
of f reedom all absolute values of the coefficients ] fi I of the t r igonometr ic  polynomial (7) coincide, the dif- 
ference being connected only with the different signs. P rac t i ca l  calculations showed that the minimum loading 
p a r a m e t e r  ~42 almost  coincides with the loading p a r a m e t e r  which is obtained in the case  of such a dimension-  
less  amplitude of faults: 

fo = ZlhI.  

It is obvious that f0 -> ] f*[ [see (8)]. 

In Table 1 there  is given a pa r ame te r  ~42 = 0.507 (I fi t = 0.1, L / R  = 0.5) which is below the lower cr i t ica l  
load for the problem being considered.  The per turbat ion theory  does not descr ibe  substantial ly nonlinear ef-  
fects;  the solution of the nonlinear sys t em in the case  of using methods of the per turbat ion theory []-4] is ex- 
panded in a se r i e s  with respec t  to a smal l  p a r a m e t e r  [see (1)]; the n o r m  of the solution is not small  when the 
upper c r i t ica l  load approaches the lower one. These nonlinear effects can be descr ibed,  if we use in the solu-  
tion of nonlinear problems the Bubnov-Ga le rk in  method [12], especial ly select ing the approximation.  

In Fig. 2 we have presented a sca t t e r  band of upper cr i t ica l  loads when the dimensionless  amplitudes of 
the initial faults for shells with R / t  = 800 and L / R  = 0.5 vary;  the curves  1 and 2 cor respond  to the minimum 
and maximum values of the upper cr i t ical  loads,  the curve  3 cor responds  to the number of degrees  of f reedom 
in the calculat ion,  while the curve  4 cor responds  to the lower cr i t ical  load. The curve  1 in the r ight lower 
co rne r  of Fig. 2 is located below the line 4, since the theory  of per turbat ions  does not descr ibe  substantially 
nonlinear effects. The ent ire  sca t te r  band of "experimental"  resul ts  presented in Fig. 2 is located below the 
curve  for the upper c r i t ica l  load obtained in [4]. 

In Figs. 3 and 4 we have presented the resul ts  of calculat ions to de termine  the minimum cr i t ica l  loads 
(solid and dashed lines); in Fig. 4 we have given the d a s h e d - d o t c u r v e s  for  the number of degrees  of f reedom L 
Figures  3 and 4 cor respond  to the values of the dimensionless  amplitudes of the initial faults I fi I = 0.025 and 
0.05; curves  1-3 a re  const ructed  for shells with L / R  = 2, 1, 0.5, with the solid curves  for the pa r ame te r  b 2 = 
min (-b) and the dashed curves  for the pa r ame te r  b 1 = max (-b). In Fig. 4, the curves  4 and 5 correspond to 
shells with L / R  = 0.5 and 1. The calculated curves  obtained for the cr i t ical  loads a re  located considerably 
lower than the analogous curves  f rom [4]. 
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The calcula t ions  c a r r i e d  out allow us to cons t ruc t  the probabi l i ty  c h a r a c t e r i s t i c s  of the p r o c e s s  of s t a -  
bil i ty loss  [see (7), (11), and Fig. 2]; the der iva t ion  of the probabi l i ty  c h a r a c t e r i s t i c s  somewhat  di f fers  f r o m  
the methods p roposed ,  for  example ,  in [13]. As a r e su l t  of the numer i ca l  exper iment ,  for  each s e r i e s  we have 
obtained the se t  of c r i t i ca l  loads 

• 2 1 5  • . . . .  , • 2 1 5  (12) 

whe re  the p a r a m e t e r  i is de te rmined  by the number  of deg rees  of f r eedom l in the ca se  being considered.  Each 
event  is a s sumed  to be equally probable:  In the t r i gonome t r i c  polynomial  (7) we choose all poss ib le  combina-  
tions of the signs of the coeff ic ients .  Grouping in the co r re spond ing  manner  the c r i t i ca l  loads (12), we obtain 
the probabi l i ty  c h a r a c t e r i s t i c s .  In Fig. 5 we have p resen ted  the r e su l t s  of the probabi l i ty  calculat ions:  The 
cu rve  1 c o r r e s p o n d s  to a shell  with R / t  = 800, L / R  = 0.5, I fi I = 0.1, l = 9; the cu rve  2 co r r e sponds  to R / t  = 
600, L / R = 0 . 5 ,  t f i  t = 0 . 0 5 ,  l =  7; the cu rve  3 co r r e sponds  t o R / t = 8 0 0 ,  L / R =  1, I f i l  =0 .1 ,  l = 5 .  For  a 
load p a r a m e t e r  l e s s  than 42 the probabi l i ty  for  the shel l  not to lose  s tabi l i ty  is unity, while in the ca se  when 
it exceeds  n l  the probabi l i ty  for the shel l  not to lose  s tabi l i ty  is zero .  The s c a t t e r  band in t he  examples  p r e -  
sented is la rge;  as a ru le ,  in the neighborhood of the l eas t  p a r a m e t e r  of the c r i t i ca l  load 42 the re  is an in-  
s ignif icant  number  of c r i t i ca l  loads (12) for  each s e r i e s .  The s t r a igh t  l ine 4, co r respond ing  to the lower  c r i t i -  
cal  load, i n t e r sec t s  the cu rve  1 (the pe r tu rba t ion  theory  does not take into account substant ia l  nonl ineari t ies) .  

It is d e s i r a b l e  to take into account  the c h a r a c t e r i s t i c s  of the s tabi l i ty  p r o c e s s  cons t ruc ted  f rom the nu- 
m e r i c a l  expe r imen t  when c a r r y i n g  out actual  exper iments .  If the number  of deg rees  of f r e edom l is l a rge  
(which is to be borne  in mind dur ing the calculat ions) ,  then a fa i r ly  substant ia l  actual  expe r imen t  is n e c e s s a r y  
in o r d e r  to give with high confidence p rac t i ca l  r e commenda t ions  for  the calculat ions.  
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S T R E S S  C O N C E N T R A T I O N  N E A R  T H E  A P E X  O F  A C R A C K  

BY T H E  C O U P L E - S T R E S S  T H E O R Y  O F  E L A S T I C I T Y  A N D  

T H E  M E T H O D  O F  P H O T O E L A S T I C I T Y  

Y a .  M.  S h i r y a e v  UDC 539.30+620.171.5 

The  s t r e s s  c o n c e n t r a t i o n  n e a r  the  apex of  a c r a c k  in a t r a n s v e r s e  f i e ld  of s i m p l e  t e n s i o n  has  a l r e a d y  
been  the  o b j e c t  of i n v e s t i g a t i o n s  w i th in  the  f r a m e w o r k  of c o u p l e - s t r e s s  e l a s t i c i t y  t h e o r y  [1-5] .  I t  fo l lows f r o m  
[1-3] tha t  the  p r e s e n c e  of  c o u p l e - s t r e s s e s  r e s u l t s  in a r i s e  in the  s t r e s s  c o n c e n t r a t i o n  n e a r  the  c r a c k  apex.  
Th i s  r e s u l t  " c o n t r a d i c t s "  the  r e d u c i n g  e f f ec t  of c o u p l e - s t r e s s e s  in the  known p r o b l e m  about  the  s t r e s s  c o n c e n -  
t r a t i o n  n e a r  a c i r c u l a r  ho le  in a t e n s i l e  f ie ld .  It is  s a i d  in [4] t ha t  the  p r e s e n c e  of  coup le  s t r e s s e s  does  not 
i n f luence  the  m a g n i t u d e  of  the  s t r e s s - i n t e n s i t y  f a c t o r ,  and the s t r e s s  c o n c e n t r a t i o n  n e a r  an e l l i p t i c a l  ho le  in  a 
f i e ld  of s i m p l e  t e n s i o n  is  c o n s i d e r e d  in [5]. T h e r e  r e s u l t s  f r o m  an a n a l y s i s  of th is  p a p e r  tha t  the  s t r e s s  c o n -  
c e n t r a t i o n  d i m i n i s h e s  wi th  the  i n c r e a s e  in a new e l a s t i c  c o n s t a n t  of the  m a t e r i a l  l i n t r o d u c e d  by the c o u p l e -  
s t r e s s  t h e o r y  of  e l a s t i c i t y .  

E x p e r i m e n t a l  p a p e r s  in which  the  e f fec t  of the  in f luence  of c o u p l e - s t r e s s e s  on the  s t r e s s  c o n c e n t r a t i o n  
n e a r  a c r a c k  would  be  c l a r i f i e d  a r e  s t i l l  n o n e x i s t e n t  judg ing  by the  l i t e r a t u r e .  

Th is  p a p e r  is  devo t ed  to a c l a r i f i c a t i o n  of the  e f fec t  of the  in f luence  of coup le  s t r e s s e s  on s t r e s s  c o n c e n -  
t r a t i o n  n e a r  a c r a c k ,  both  a n a l y t i c a l l y  and e x p e r i m e n t a l l y  by the  me thod  of  p h o t o e l a s t i c i t y .  

~1. The  s t r e s s  c o n c e n t r a t i o n  n e a r  the  apex of  a c r a c k  in a t r a n s v e r s e  f i e ld  of  s i m p l e  t e n s i o n  i s  c o n s i d -  
e r e d  in a c o o r d i n a t e  s y s t e m  (Fig.  1). 

It is  u se fu l  to i n t r o d u c e  the s u m  of n o r m a l  s t r e s s e s  ( invar iant )  into c o n s i d e r a t i o n ,  t h i s  s u m  hav ing  the  
s a m e  va lue  in  c l a s s i c a l  and c o u p l e - s t r e s s  t h e o r y  and be ing  d e v e l o p e d  f r o m  the  s o l u t i o n  of  t he  D i r i c h l e t  p r o b -  
l e m  [6, 7], in  o r d e r  to  d e t e r m i n e t h e  s t r e s s - i n t e n s i t y  f a c t o r  b y  m e a n s  of  c o u p l e - s t r e s s  e l a s t i c i t y  t h e o r y .  It fo l lows 
f r o m  the  e x p r e s s i o n  for  the  s t r e s s e s  [8] tha t  

~ §  ~,j = k(2 )')t '~cos(0/2), (1.1) 

w h e r e  k is  the  s t r e s s - i n t e n s i t y  f a c to r .  

Le t  us i n t r o d u c e  the  c o m p l e x  v a r i a b l e  z = x + iy = z 1 + r e  0i, w h e r e  z~ is a quan t i t y  c h a r a c t e r i z i n g  the  
p o s i t i o n  of the  c r a c k  apex.  Then  (1.1) can  be  w r i t t e n  in  the  f o r m  

I / 2 \1/21 
~: + ~ ,  = ne[k[ ._- :~)  j. (1.2) 

Let  us app ly  the  c o m p l e x  v a r i a b l e  method .  A c c o r d i n g  to  [6, 7], t he  d e p e n d e n c e  b e t w e e n  the  l e f t  s i d e  of  
(1.2) and the  s t r e s s  func t ions  has  the  f o r m  

(i~-~- (~ = 4Re lcp'(z) ]. (1.3) 

C o m p a r i n g  (1.2) and (1.3) and keep ing  in mind  tha t  (1.2) is  va l id  only for  v a l u e s  of  z n e a r  z l ,  we  ob t a in  the  e x -  
p r e s s i o n  fo r  k in the  f o r m  

k = 2 |F21im(z - -  z~)'/2(p'(z). (1.4) 
Z-~$1 

It is  s e e n  f r o m  (1.4) tha t  the  s t r e s s - i n t e n s i t y  f a c t o r s  k a r e  d e t e r m i n e d  s u f f i c i e n t l y  s i m p l y  i f  only  the  func t ion  
Z' (z) is  known n e a r  the  c r a c k  apex.  

L e n i n g r a d .  T r a n s l a t e d  f r o m  Z h u r n a l  P r i k l a d n o i  Mekhan ik i  i T e k h n i c h e s k o i  F i z i k i ,  No. 2,  pp. 150-154,  
M a r c h - A p r i l ,  1978. O r i g i n a l  a r t i c l e  s u b m i t t e d  F e b r u a r y  15, 1977. 
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